

Магнитные и электронные состояния ионов Со и Fe в монокристаллических оксиборатах

<u>М.С. Платунов</u>¹, С.Г. Овчинников^{1,2}, Н.В. Казак¹, Н.Б. Иванова^{1,2}, А. Rogalev³, F. Wilhelm³, E. Weschke⁴, E. Schierle⁴, Я.В. Зубавичус⁵

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия ³ European Synchrotron Radiation Facility, Grenoble, France ⁴ Helmholtz-Zentrum Berlin - Bessy II, Berlin, Germany ⁵ НИЦ «Курчатовский институт», Москва, Россия

Федеральное государственное бюджетное учреждение науки Институт ФИЗИКИ ИМ. Л. В. Киренского Сибирского отделения Российской академии наук

Актуальность исследования

Объекты для фундаментальных исследований

- 1. Структурные и магнитные переходы;
- 2. Зарядовое упорядочение [Fe₂BO₄, Fe₃BO₅];
- 3. Электронные переходы [FeBO₃, VBO₃, GdFe₃(BO₃)₄] и спиновый кроссовер [FeBO₃] под давлением;

- 4. Оптическая прозрачность [FeBO₃, ReFe₃(BO₃)₄, Co₂B₂O₅];
- 5. Низкоразмерные элементы в кристаллической структуре;
- 6. Сильные электронные корреляции

T. Kawano et al. J. Solid State sciences (2010)

Выбор объекта исследования

 $(M^{2+})_2(M^{3+})BO_5$ (ludwigite)

M²+ = Mg, Mn, Fe, Co, Ni, Cu, Zn...; M³+ = Ti, V, Cr, Fe, Co, Ga...

- низкоразмерные подструктуры (с (цепочки, зигзаговые стенки, ленты) кристаллическая группа людвигитов - *Рbam* 4 неэквивалентные позиции
- сложное магнитное поведение: каскад магнитных переходов, дальний магнитный порядок, спиновое стекло, магнитная анизотропия

Разнообразные скотоитов (а), людвигитов (с).

структурные элементы пироборатов (б) и

Выбор объекта исследования

Выбор объекта исследования

Fe						
Анти	ти Объекты исследования:					
T _{N1} = T _{N2} =	Co_3BO_5 ; $Co_{3-x}Fe_xBO_5$					
	Цель работы:					
Magnetization (emu/g)	Комплексное исследование взаимосвязи кристаллической и магнитной структуры кобальтсодержащих оксиборатов Co_3BO_5 и Co_2FeBO_5 , в том числе посредством синхротронного излучения. Задачи работы: 1.Определить <u>кристаллическую структуру</u> методом рентгеновской дифракции (XRD); 2.Изучить <u>локальную атомную структуру</u> с помощью EXAFS- спектроскопии:	PRB (2008				
D. C. Fre J. Barto	3.Изучить <u>магнитные свойства</u> монокристаллов, ориентированных в различных кристаллографических направлениях; 4.Изучить <u>локальные магнитные свойства</u> посредством XMCD-спектроскопии в области жесткого и мягкого рентгеновского излучения.					

D. C. Freitas et al. PRB (2010)

Применяемые методики

- 1. Метод спонтанной кристаллизации из раствора-расплава Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- 3. Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL - Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. - ILHMFLT
- 4. XAFS (XANES, EXAFS)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle - BESSY II совместно с A. Rogalev и F. Wilhelm - ESRF

ILHMFLT Польша

Красноярск, 10 января 2014

станция СТМ Москва Торжественное заседание Ученого совета

НИЦ «Курчатовский институт»,

Образцы	Система раствор-расплава
Co ₃ BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3$ = 3 : 2 : 4 : 3 : 3
Co _{3-x} Fe _x BO ₅	Bi ₂ Mo ₃ O ₁₂ : B ₂ O ₃ : CoO : Na ₂ Co ₃ : Co ₂ O ₃ : Fe ₂ O ₃ = 3 : 2 : 4 : 3 : 2 : 1

ESRF, ID12 station Франция

_____ Германия

Получение кристаллов и структурные исследования

134437 (2009)

	M1	M2	M3	M4
Co2FeBO5	0,186	0,040	0,234	-0,060
Co _{2.4} Ga _{0.6} BO ₅	0,200	0,068	0,249	-0,043

N.B. Ivanova et al. Low Temp. Phys. 38 (2012) Н.Б. Иванова и др. ФТТ, 54 (2012)

0.25 Ni²⁺

0.5 Ni²⁺

0.25 Ni²⁺

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Красноярск, 10 января 2014

 Co_3BO_5

Co₂FeBO₅

 $Co_{2,4}Ga_{0,6}BO_5$

Ni₂FeBO₅

Торжественное заседание Ученого совета

0.5 Fe³⁺

Структурные исследования

Наименьшие расстояния между переходными ионами в неэквивалентных позициях (в Å)

	<i>d</i> ₁₃	d ₂₃	d ₃₄	<i>d</i> ₁₄	d ₂₄
Co ₃ BO ₅	3.298	3.051	3.085	3.005	2.747
Co ₂ FeBO ₅	3.450	3.122	3.167	3.058	2.845
$Co_{24}Ga_{06}BO_{5}$	3.404	3.089	3.123	3.031	2.822

Зигзагообразные стенки в кристаллической структуре людвигита

Кристаллографические слои, содержащие замещающие трехвалентные ионы. Проекции кристаллической структуры выполнены на плоскость и *bc* (а) и *ac* (б). N.B. Ivanova et al. Low Temp. Phys. 38 (2012) Н.Б. Иванова и др. ФТТ, 54 (2012) Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Красноярск, 10 января 2014

XANES и EXAFS исследования Со₃ВО₅ и Со₂FeBO₅. К-край

Красноярск, 10 января 2014

XANES и EXAFS исследования Со₃ВО₅ и Со₂FeBO₅. К-край

Магнитные исследования Co₃BO₅

Красноярск, 10 января 2014

Магнитные исследования Co₂FeBO₅

Красноярск, 10 января 2014

Магнитные исследования Co₃BO₅ и Co₂FeBO₅

Зависимости коэрцитивного поля

Магнитные параметры кристаллов Co₃BO₅ и Co₂FeBO₅ в магнитоупорядоченном состоянии.

*М*₀ - остаточная намагниченность,

*H*_{*C*} - коэрцитивное поле

Материал	Направление	<i>М</i> ₀ , μ _в /ион	<i>H</i> _C (2 K), Τ
Co PO	Ь	0.91	2.3
C03DO5	С	_	_
	а	_	_
Co ₂ FeBO ₅	Ь	0.19	> 9
	С	—	—

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Красноярск, 10 января 2014

XANES и XMCD исследования Co₂FeBO₅. L_{2,3} края

Красноярск, 10 января 2014

Результаты расчета магнитных моментов

Красноярск, 10 января 2014

ХМС исследования Co₂FeBO₅. К-край

Красноярск, 10 января 2014

- 1. Методом рентгеноструктурного анализа (XRD) изучена кристаллическая структура монокристаллов Co₃BO₅ и Co₂FeBO₅. Показано, что ионы Fe³⁺ предпочитают позиции с наименьшим градиентом электрического поля кислородного октаэдра.
- 2. С использованием XANES- и EXAFS-спектроскопии исследована локальная атомная структура ионов переходных металлов в монокристаллах Co₃BO₅ и Co₂FeBO₅, определены валентные состояния ионов Co и Fe. В целом результаты EXAFS-анализа соответствуют и уточняют рентгеноструктурные данные.
- 3. Для монокристаллов Co₃BO₅ и Co₂FeBO₅ установлен тип магнитного упорядочения, определены температуры магнитных фазовых переходов, величины коэрцитивного поля. В Co₃BO₅ и Co₂FeBO₅ обнаружена сильная магнитная кристаллографическая анизотропия типа «легкая ось». Обнаружен выраженный рост величины коэрцитивного поля с понижением температуры в Co₃BO₅ и Co₂FeBO₅.
- 4. Впервые вблизи К- и L_{3,2}-краев поглощения Co²⁺ и Fe³⁺ исследованы температурные и полевые зависимости XMCD-спектров в монокристаллах Co₃BO₅ и Co₂FeBO₅. Обнаружена взаимная антипараллельная ориентация магнитных моментов кобальта и железа. Определены величины коэрцитивных полей, создаваемых ионами Co²⁺ и Fe³⁺. Обнаружено сильное различие величин коэрцитивных полей, полученных интегральным и элементно-селективным методами. Разделены спиновый и орбитальный вклады в полные магнитные моменты Co²⁺ и Fe³⁺.

Благодарности

Институт физики СО РАН

Овчинников С.Г., Иванова Н.Б., Казак Н.В., Князев Ю.В., Безматерных Л.Н., Васильев А.Д., Заблуда В.Н., Баюков О.А., Эдельман И.С., Петров Д.А., Еремин Е.В., Великанов Д.А. и др. сотрудники института

НИЦ «Курчатовский институт» станция «Структурного материаловедения» (Москва) Зубавичус Я.В., Велигжанин А.А. и др.

Европейский центр синхротронного излучения (ESRF, Grenoble, France) Andrei Rogalev, Fabrice Wilhelm и др.

Берлинский центр синхротронного излучения (BESSY, Berlin, Germany) Eugen Weschke, Enrico Schierle и др.

Международная лаборатория сильных магнитных полей и низких температур (Wroclaw, Poland) Нижанковский В.И. и др.

ЦКП "Сибирский центр синхротронного и терагерцевого излучения" (ИЯФ СО РАН) станция EXAFS-спектроскопии (Новосибирск) Канажевский В.В. и др.

Физический институт имени П.Н.Лебедева РАН (Москва) Гаврилкин С.Ю., О.М. Иваненко и др.

